
A Survey of TLS 1.3 Record Protocol

Yuheng (Elle) Wen1

Abstract— The TLS 1.3 Record Protocol is a crucial
component of the TLS protocol suite, aiming for provid-
ing a secure communication channel between a browser
and a server. In this paper, I explain the construction of
the TLS 1.3 Record Protocol based on the most updated
RFC document. My main work lies in the security
analysis of the TLS 1.3 Record Protocol, where I first
explain the basic concepts and proof techniques used
in constructive cryptography proposed by U. Maurer
[2], then review the security proof of TLS 1.3 Record
Protocol given by C. Badertscher et al [1]. Then I discuss
the performance of TLS 1.3 Record Protocol against
length field attack, replaying attack, cookie cutter attack,
Lucky 13, and BEAST. I aim to provide an accessible
explanation about the construction and security analysis
of TLS 1.3 Record Protocol, which can be useful for
anyone interested in the security of TLS.

I. INTRODUCTION

The TLS (Transport Layer Security) protocol
is a widely used cryptographic protocol that pro-
vides secure communication over the internet. It
is widely used to secure web traffic, email, instant
messaging, and other forms of online communica-
tion. The TLS protocol consists of several layers,
each with a specific responsibility in the secure
communication process. The TLS Handshake Pro-
tocol is a critical component of the TLS protocol,
responsible for establishing the cryptographic pa-
rameters of the session, authenticate the server to
the client, and optionally authenticate the client to
the server.

The focus of this paper is the other critical
components of the TLS protocol which is the
TLS Record Protocol. The TLS Record Protocol
is responsible for fragmenting messages into man-
ageable blocks, adding integrity and confidentiality
protection to these blocks, and delivering them to
the recipient in a secure and reliable manner.

1This is the term paper for CSCI 388 Cryptography at Reed
College, Spring 2023. Course Instructor: Prof, Chanathip (Meaw)
Namprempre

TLS 1.3, the latest version of the TLS protocol,
introduced significant changes to the Record Proto-
col to improve security, performance, and privacy.
In particular, TLS 1.3 Record Protocol eliminated
support for many older cryptographic algorithms
and replaced them with newer, more secure algo-
rithms. It also simplified the handshake process,
reducing the number of round trips required to
establish a secure connection, and introduced a
zero-RTT mode that allows clients to resume a
previous session without a full handshake.

Given the critical role of the TLS Record Pro-
tocol in securing online communication, it is es-
sential to understand its inner workings and its
security conditions.

II. LITERATURE REVIEW

While there are a great amount of paper that
discuss the attacks of the TLS record layer for prior
version such as the Lucky Thirteen [5] and the
BEAST, there is minimal for 1.3 version.

A long line of work analyzes the security of
TLS for versions prior to 1.3. Several recent papers
use a game-based definition (ACCE) that models
both the handshake and the record layer at the
same time, since TLS versions prior to 1.3 could
formally not be proved as the composition of
the two sub-protocols. Thanks to the adoption of
AEAD and the better separation of the two sub-
protocols in TLS 1.3, looking at the security of
the two subprotocols separately becomes possible
and meaningful. Two attempts have been made that
took different approaches. A. Delignat-Lavaud et
al. [3] gave a proof using game based reductions
and typing. C. Badertscher et al. [1] gave a proof
using Augmented Secure Channels (ASC) and
constructive cryptography. This paper reviews the
later proof.

III. CONSTRUCTION

The most updated standard document for TLS
1.3 specifies the implementation of the TLS 1.3
record protocol [4]. In the setting of a browser-
server communication as shown in Figure 1, let A
be a browser and B be a server. During the hand-

Fig. 1. A browser-server communication setting.

shake protocol, A and B have already established
two shared keys, denoted as ka and kb. Specifically,
kb is the browser key used later in encrypting or
decrypting messages coming from the browser, and
ks is the server key for encrypting or decrypting
messages coming from the server. When A wants
to deliver a message m to B, it first formats m to
be TLSInnerPlaintext as shown in Figure 2, where
the type bits are encoded to represent the type of
the message m, 0n are padding bits, and m is the
actual content A wants to send.

Fig. 2. TLSInnerPlaintext. The type bit is a single bit to represent
one of handshake type(data sent during handshake protocol), alert
data type(alert data sent to terminate the communication), and
application data type(data sent during actual communication of A
and B). The number of 0 used for padding are determined by the
parameters shared by A and B during handshake protocol

Next, A uses an Authenticated Encryption with
Associated Data (AEAD) algorithm that is agreed
by both A and B during handshake protocol to
encrypt TLSInnerPlaintext:

c ← AEAD(kb or ks, nonce, TLSInnerPlaintext, additional data)

The key used is either kb or ks depending on
which party the message comes from. The nonce
is created as follows:

nounce = (0n ∥ sequence number)⊕ IV

The 64 bit sequence number is maintained sep-
arately for encrypting and decrypting TLSInner-
Plaintext. It is initialized to be 0 every time a new

key is used, and it increments by 1 after encrypting
or decrypting each TLSInnerPlaintext. IV is a static
value determined during handshake, and it can be
server IV or browser IV depending on which party
the message comes from. The ”additional data”
is obtained by concatenating a fixed value 23, a
redundant value 0x0303, and the length of c:

additional data = 23 ∥ 0x0303 ∥ |c|

Finally, the ciphertext c is formatted as a record
that is sent to the internet for transmission (Figure
3). When B received the record, it runs AEAD−1

Fig. 3. TLS record. Opaque type is always set to the value 23 for
for outward compatibility with middleboxes accustomed to parsing
previous versions of TLS. Version is set to be 0x0303. Length is
the sum of the lengths of plus one for the content type, plus any
expansion added by the AEAD algorithm.

to decrypt c and gets the actual content m.

IV. PROOF OF SECURITY

A. Overview

This section will only focus on C. Badertscher
et al.’s approach [1] to prove the security of TLS
1.3 record layer. The authors introduced a new
abstraction of a secure channel called Augmented
Secure Channels (ASC), and then proceed to prove
that an insecure channel (IC) can securely con-
struct ASC. Finally, they demonstrated that ASC
can securely construct the TLS 1.3 record protocol.
Before delving into the details of the proof, it is
necessary to explain the rationale behind construc-
tive cryptography.

B. Constructive Cryptography: basic concepts

U. Maurer [2] proposed constructive cryptog-
raphy as a new paradigm for security definition
and proofs in 2012. In constructive cryptography,
any abstract object with interfaces is considered a
system. In other words, any cryptographic entity,
from low-level tools(ex. block ciphers), higher
level primitives(ex. digital signatures), to highest
level protocols(ex. key exchange protocols), is
viewed as a system. An interface enables a system
to interact with the environment or other systems.
Analogous to I/O interface defined in the context

of processor where it means any interface that
transfers data between the CPU and the rest of
the world, interface of a system simply means any
input/output interface of any cryptographic entity.
Notably, two system can be composed into a single
system by connecting their interfaces.

We consider three special types of systems,
resource systems, converter systems, and distin-
guisher systems.

A resource system provides a certain service to
parties (usually Alice, Bob, and Eve). Typically
(but not always), a resource system contains in-
terfaces that access all parties. Figure 4 shows
a simple shared-secrete-key resource that can be
constructed by some key exchange protocol. The
service of this system is to provide shared secrete
key to party A and party B. This resource system
initially chooses a key k from some key distri-
bution K. Interface A connects SKK to party A.
When party A wants to get the shared secrete key,
it sends the input “getKey” to SKK, then SKK
output k to party A. An illustration is shown in
Figure 5.

Fig. 4. The shared secrete key resource [1, Fig 4]

Fig. 5. The shared secrete key resource demonstration

A converter system is a system with an inside
interface and an outside interface. Figure 6 shows
that a converter α is connected to a resource R by
connecting the inside interface of α to the interface

i of R. The outside interface of α now serves as
the new interface for the combined system, which
is again a resource system denoted by αiR. An
easy way to make sense of this notation is reading
it as ”α connects to R through interface i”.

Fig. 6. A new resource system αiR created by combining α and
R through interface i.

A distinguisher system D is designed specifi-
cally to capture the notion of two resource systems
S and T ”behaving essentially identically”. D pro-
vides inputs to the connected resource system and
receives the outputs generated by the resource. For
example, a distinguisher D for S and T is combined
with one of S or T. Then D repetitively sends
inputs to any interface of S or T and receives the
corresponding outputs. D stops until it outputs a
bit 0 or 1 that indicates its guess to which system
it is connected. The distinguishing advantage of D
for S and T is defined as

△D(S, T) = Pr[DS → 1]− Pr[DT → 1]

In words, it means the advantage of D to distin-
guish S and T equals the probability of D outputs
1 when connecting to S minus the probability of
D outputs 1 when connecting to T. Notably, we
define the “difference” between system S and T
denoted as d(S, T) to be equal to△D(S, T). Figure
7 illustrates how D works.

Fig. 7. The distinguisher D for S and T. D is connected to either
S or T. D needs to guess which one it has been connected to by
adaptively sending input and receiving output from its connected
resource. If it guesses S, it outputs 1. If it guesses T, it outputs 0.

C. Constructive Cryptography: proof of security

As the name suggests, constructive cryptography
is all about construction. A system is proved to
be secure if it can be securely constructed from
some insecure resource. A general description of
the proof process is as follows. Suppose we want
to have a secure resource that provides a specific
service. We first spell out what an ideal resource
should be able to do. Then we spell out what the
adversary should be able to do and should not be
able to do in the ideal resource. Based on these,
we then create two modes of an ideal resource,
S for the adversary is present and ⊥E S for the
adversary is not present. ⊥E is a converter that
“shields” the interface of the adversary (can be
done easily by making the adversary sends inputs
when c = 1, and set c = 0). Next, we spell out the
resource R of the starting point, or simply ”what
we can do right now”. So now we have what
it is called “the real resource” R and “the ideal
resource” S. The next step and also the hardest
step is to create some converters π1, π2 such that
the converters “securely construct” S from R.

Definition (secure construction). For resource
R and S we say that converters (π1, π2) securely
construct S from R within arbitrarily small value
ϵ, denoted

R
(π1,π2,ϵ)−−−−−→ S,

if the following two conditions are satisfied:

d(πA
1 π

B
2 ⊥E R,⊥E S) ≤ ϵ (1)

d(πA
1 π

B
2 R, σES) ≤ ϵ (2)

where σ is a converter that simulates the behaviors
of the adversary present in R, and A, B are
interfaces.

Finally, once we’ve found such converters π1, π2

and have proved the two conditions are met, we’ve
found a resource πA

1 π
B
2 R that is indistinguishable

from the ideal resource S. Hence πA
1 π

B
2 R must be

the secure resource that we wanted.

D. TLS 1.3 Record Protocol: proof of security

Follows from the approach outlined in the previ-
ous section, we proceed to construct a secure TLS
1.3 Record Protocol. The first step is to spell out an
ideal resource based on what we think a good TLS

record protocol should provide. In many relevant
communication channels, transmitted data packets
have two parts. The first part is a header that
contains the information needed for transmission
and requires authenticity but not confidentiality,
and the second part is a payload that contains the
encrypted message and hence needs both authen-
ticity and confidentiality. We further observes that
a header conceptually can be split into two parts:
an implicit part which is the context that is known
by the receiver, and an explicit part that is unknown
to the receiver. The ideal resource that is designed
to formalize these service is called a Augmented
Secure Channel(ASC) which is presented in Figure
8.

Fig. 8. The augmented secure channel resource [1, Fig 3].

Interface A is the sender. It sends an explicit part
of the header E, an implicit part of the header I ,
and the message M to the channel. In addition,
we assume that only the information about the
length of the message can be leaked so only |M | is
sent. Interface E is the channel between the sender
A and the receiver B. E and |M | are delivered
at E. What E is allowed to do is either deliver
all the inputs to the receiver B, or inject special
element ⊥ that will terminate the channel at the
receiver’s side. When interface B received new
messages, it first fetches the context information it
has and verifies if the received header is legitimate
or not. If yes, it outputs the message M . If not, it
terminates. This can be implemented using a FIFO
queue at the sender’s side and the receiver’s side
respectively.

The next step is to formalize the assumed re-
source. We start our construction having only an
insecure channel IC and and shared-key resource

SK built during handshake protocol. We denote
this by [IC, SKK]. See Figure 9 and Figure 4.
In IC, the message M is sent in clear, and an
adversary can inject any message of its choice to
receiver B.

Fig. 9. The insecure channel resource [1, Fig 2]. Interface B simply
receives any message that is sent by E and is omitted here.

Then we propose two converters encπ and decπ
(Figure 10) and prove that they securely con-
struct ASC from IC using the definition of secure
construction. The encπ converter first gets a key

Fig. 10. [1,Fig 5]

K by asking SKK. Then for every packet that
the sender wants to send, it creates an ”additional
data” A using E and I , and then uses and AEAD
encryption algorithm E to encrypt the message M
with a nonce N created by incrementing 1 for
every encryption to get C. It then sends (E,C)
to IC where IC performs simple delivery. The
decπ converter first gets the key from SKK and
upon receiving (E,C) from IC at interface in, it
delivers the inputs to interface out. At interface
out, it decrypts C using decryption algorithm of
AEAD to get back M and sends it to the receiver.
The combined system of the two converts and

[IC, SKK] is denoted by encAπ dec
B
π [IC, SKK] as

illustrated in Figure 12.

Fig. 11. The combined system encAπ dec
B
π [IC, SKK]

Next, we want to prove the two conditions (1)
and (2) are met.

Condition 1. For the first condition when
the adversary is absent, we want to prove that for
a distinguisher D, the value of

d(encAπ dec
B
π ⊥E [IC, SKK],⊥E ASC)

=△D(encAπ dec
B
π ⊥E [IC, SKK],⊥E ASC)

=Pr[D(encAπ dec
B
π ⊥E [IC, SKK])→ 1]− Pr[D(⊥E ASC)→ 1]

is bounded. Roughly speaking, we found that the
security of AEAD implies the security of ASC.
The security game for AEAD is defined using the
common real or ideal game as shown in Figure
12. An adversary A needs to output a bit 1 or
0 indicating which oracle it thinks it gets. The
advantage of A is defined as

Advaeπ (A) = Pr[ARealπ → 1]− Pr[AIdealπ → 1]

Now we show that the difference between the real

Fig. 12. Real and ideal security game for AEAD-schemes[1, Fig
1].

and ideal resource is bounded by the advantage
of an adversary A playing AEAD game. More
formally, we prove the following lemma.

Lemma 1. If there is a distinguisher D for
the two resources, then there is an adversary A

playing the AEAD-security game such that

△D(encAπ dec
B
π ⊥E [IC, SKK],⊥E ASC) ≤ Advaeπ (A)

(3)
Proof: First note that in this condition, ⊥

blocks the adversary from attacking. This essen-
tially means IC is now a reliable channel. So for
the real resource, any tuple (E, I,M) that is sent
to encπ gets output M to the receiver. For the ideal
resource ASC, any tuple (E, I,M) that is sent to
interface A gets output M at interface B only if the
I being sent to A is equal to the I that is fetched by
interface B. This means that only if in ASC the ith
input at interface B is (fetch, I ′i) for I ′i ̸= Ii where
Ii is the implicit part of the ith input at interface
A, then the behavior of the two systems can differ:
while ASC always returns ⊥ in this case, the real
combined resource might return M ̸=⊥. Since this
is the only difference between the two systems, we
can upper bound the distinguishing advantage by
the probability that the distinguisher D can provoke
such an output at interface B when interacting with
the real resource. We denote this event by F .

Our next job is to bound the probability of the
event F . Observe that F occurs exactly if the
decryption algorithm of the AEAD-scheme returns
a message M ̸=⊥ on input a different additional
data than used for encryption. This is because in
the cases when the implicit part I that is being sent
is different from the implicit part I that is being
fetch, the I in enc must be different from the I in
dec. And the additional data A in both converters
is derived by their own (E, I) pair. Based on
this observation, we construct an adversary A that
plays AEAD security game using the distinguisher
D for the real and ideal resource (Figure 13). The
algorithm is shown in Algorithm 1. We conclude
the proof by noting that Advaeπ (A) = Pr[F occurs]

Condition 2. For the second condition where
the adversary is present, we want to construct
a converter sim for the ideal resource ASC
that simulates the adversary’s action in the real
resource. The simulator is constructed as shown
in Figure 14. Similarly as in condition 1, we want
to prove the following lemma.

Lemma 2. If there is a distinguisher D for

Fig. 13. The adversary A that plays AEAD security game using
the distinguisher D that distinguish real and ideal resource

the two resources, then there is an adversary A
playing the AEAD-security game such that

△D(encAπ dec
B
π [IC, SKK], sim

E
ASCASC) ≤ Advaeπ (A)

(4)
For the proof of that, see Lemma 2 of [1]. The idea
is similar with the proof of lemma 1. We construct
an adversary using D to play AEAD game. There
are four possible inputs D can make, and we need
to specify how A should do for each of them.

Lemma 1 and Lemma 2 together imply that
the two converters enc, dec allow us to securely
construct ASC from insecure channel with shared-
key resource. The next step is to securely construct

Fig. 14. The simulator for ASC [1, Fig 6].

TLS Record Protocol from ASC. We state that for
a secure TLS, there is no need to have an implicit
part of the header. The construction explained in
the construction section of this paper shows that
this is true, since the TLS record contains only fix
value and a encrypted ciphertext (See Figure 3).We
present the TLS Record, the two converters tlsSnd
and tlsRcv, and the simulator for tls in Figure 16,
Figure 17, and Figure 15. Given these, it is easy to
see actually there is ”no difference” between the
real resource ASC and the ideal resource TLS.

Algorithm 1: Adversary A that plays
AEAD game
N ′, N ′′ ← 0;
Initialize FIFO empty queue Q;
Run D as follows:

if D inputs (E, I, M) at interface A
then

C ← Enc((N ′, (I, E),M));
N ′ ← N ′ + 1;
Q.enqueue((E, I,M,C));
if Q is empty then

nothing
else

(E, I,M,C)← Q.dequeue;
if I ′ = I then

M ′ ←M
end
if I ′ ̸= I then

M ′ ← Dec(N, (I ′, E), C)
end

end
N ′′ ← N ′′ + 1;
if M ′ ̸=⊥ and I ̸= I then

A stops and return 1
end
if D output a bit then

A return 0
end
output M ′ at interface B of D;

end

Actually, we can easily prove that

△D(tlsSndAtlsRcvB ⊥E ASC,⊥E SECtls) = 0

△D(tlsSndAtlsRcvBASC, simE
tlsSECtls) = 0

by first observing that when there is no adversary,
for any input on the two systems, they output
the same, and second noting that when there is
an adversary, the two systems both terminate the
session if an empty message is injected into the
channel and that all inputs are delivered in order
until termination.

Hence, we can conclude that the composition
of all systems construct a secure TLS Record
Protocol. An illustration is shown in Figure 18

Fig. 15. The simulator for TLS [1, Fig 9].

Fig. 16. The ideal TLS [1, Fig 7].

V. PERFORMANCE AGAINST COMMON
ATTACKS

A. The length field attack

For network communication protocols, it is
common to send the length of the ciphertext in
clear. The length of the ciphertext can be exploited
to deduce information about the content of the
message. For example, if an encrypted message
contains one of two images of different size, then

Fig. 17. The converters for ideal TLS[1, Fig 8].

Fig. 18. The final conclusion[1, Fig 10].

the length of the ciphertext might reveal which
image was encrypted. This attack is not a concern
for the explained TLS 1.3 record protocol because
the length of the ciphertext is fixed for any mes-
sage, which is made possible by adding padding
bits during encryption and formatting.

B. The replaying attack

An attacker may want to resend a previous
record to cause the wrong action of the receiver.
For example, an attacker can replay a purchase
order twice to get more money from the buyer.
This attack is not a concern for TLS 1.3 record
protocol since it uses sequence number which
increments by one per record in AEAD.

C. The cookie cutter attack

TLS provides a streaming interface. Records are
sent as soon as they are ready. An attacker may
want to drop the last record to cause the wrong
action of the user. TLS does not provide defense
against this. This is because TLS assumes the
application layer is responsible for defending this
so this is not part of TLS’s design goal.

D. Lucky 13

Lucky 13 is a timing attack. An attacker can
analyze the traffic response time to guess the
padding conditions given a message. However, this
attacks works only for a malformed CBC padding.
Since TLS 1.3 protocol adopts AEAD instead of
CBC, TLS 1.3 protocol is not threated by lucky 13.
However, this does not rule out the possibilities of
other forms of timing attack. By far, there is not
known efficient timing attack.

E. BEAST

This is a man-in-the-middle attack that exploits
a vulnerability of the initialization vector in CBC
mode. Since TLS 1.3 protocol adopts AEAD in-
stead of CBC, TLS 1.3 protocol is not threated by
BEAST.

VI. CONCLUSION AND DISCUSSION

In this paper, I examine TLS 1.3 Record Pro-
tocol from its current construction, its security
analysis, and its performance against some com-
mon attacks. The main part of this paper is spent
explaining constructive cryptography and the proof

of security by phrasing the logic in my own
words and drawing my own illustrative pictures.
The two main proofs for the security analysis of
TLS 1.3 Record protocol all rely on a reduction
from the distinguishing game to AEAD security
game where the adversary needs to guess real or
ideal world. For more consistency of a ”construc-
tive cryptography’s mindset”, it might be better
to frame the AEAD security game to also be a
distinguishing game for a real resource and an
ideal resource rather than a security game that is
defined the traditional game-based cryptography,
even though the two games are essentially the same
by nature. In addition, in the proof for the first
lemma. The author states that ”we can upper bound
the distinguishing advantage by the probability that
the distinguisher D can provoke such an output
at interface B when interacting with the real re-
source.” It might be better to first spell out the
adversary and then do a full advantage analysis,
or just spell out either one, instead of spelling
out neither of them which creates confusions to
readers.

TLS 1.3 Record Protocol is able to defend
almost all of the attacks thanks to the adoption
of AEAD algorithm. However, even though it is
proven secure, there are still potential system-level
vulnerabilities that need to be taken cared of by
practitioners.

REFERENCES

[1] C. Badertscher, C. Matt, U. Maurer, P. Rogaway, and B.
Tackmann, “Augmented Secure Channels and the Goal of
the TLS 1.3 Record Layer,” in Provable Security, M.-H. Au
and A. Miyaji, Eds., in Lecture Notes in Computer Science,
vol. 9451. Cham: Springer International Publishing, 2015, pp.
85–104. doi: 10.1007/978− 3− 319− 26059− 45.

[2] U. Maurer, “Constructive Cryptography – A New Paradigm
for Security Definitions and Proofs,” in Theory of Security
and Applications, S. Mödersheim and C. Palamidessi, Eds.,
in Lecture Notes in Computer Science, vol. 6993. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 33–56. doi:
10.1007/978− 3− 642− 27375− 93.

[3] A. Delignat-Lavaud et al., “Implementing and Proving the
TLS 1.3 Record Layer,” in 2017 IEEE Symposium on Security
and Privacy (SP), San Jose, CA, USA: IEEE, May 2017, pp.
463–482. doi: 10.1109/SP.2017.58.

[4] E. Rescorla, “RFC ft-ietf-tls-tls13: The Transport Layer Secu-
rity (TLS) Protocol Version 1.3,” IETF Datatracker, Aug. 10,
2018. https://datatracker.ietf.org/doc/html/rfc8446 (accessed
Feb. 05, 2023).

[5] N. J. Al Fardan and K. G. Paterson, “Lucky Thirteen: Break-
ing the TLS and DTLS Record Protocols,” in 2013 IEEE

Symposium on Security and Privacy, Berkeley, CA: IEEE,
May 2013, pp. 526–540. doi: 10.1109/SP.2013.42.

