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Abstract

Satellite operators have high incentives to protect their satellites from collision due to
the high cost of designing, building, launching and maintaining the satellites. Unfor-
tunately, the fact that satellite owners often view the satellite trajectories as private
posts a serious barrier to coordination between different operators for more accurate
collision detection and prevention. This privacy concern becomes more apparent for
satellites used for military purposes given that satellites location could reveal coun-
tries’ military operations, intelligence-gathering methods, interests in specific regions
of the Earth, or technology capabilities.

A 2014 report from the RAND Corporation proposed a method that enables satel-
lite operators to calculate collision probabilities (conjunction analysis) without shar-
ing private information about the trajectories of their satellites using cryptographic
tools for the first time. Two years later, a paper optimized the implementation pro-
posed in the RAND paper. However, even with the optimization, this method is still
too slow to feasibly run it on all of the objects to detect possible collisions and thus
is impractical if the operator owns multiple satellites.

In my thesis, we propose and implement a new method that is able to detect the
satellites at risk of collision without revealing the location information using “fuzzy”
private set intersection (PSI) and PSI with significantly reduced running time. The
running time of our method is dramatically quicker and making our method much
more scalable. Thus, it is able to run on every pair of first 751 satellites extracted from
the most recent satellites tle data provided by Space-Track with 5.5 x 10” AND gates,
where the sate of art of conjuction analysis would take 5.7 x 10 MULT gates. And
each MULT gate requires different number of AND gates depending on the number
of bits and implementations. However, the speed comes with the expense of accuracy.
With difference choice of parameters, there are different levels of false positives and
false negatives rates. When the collision distance is 500km, there can be around 20%

false negatives rates.






Chapter 1
Introduction

With the increasing number of satellites and space debris, tracking and predicting
the positions of these objects has become crucial to prevent collisions. The capacity
to manage and process this data, however, varies significantly among nations, with
only a few powerful countries possessing advanced monitoring capabilities. These
nations dominate in both the volume of satellites they manage and their control over
SSA data. The current methods of collision avoidance primarily depend on central
databases like the Space Surveillance Network, which pose risks of data manipulation
and provide less accurate data compared to what satellite operators can track inde-
pendently. This reliance on potentially compromised and less precise data underscores
the need for improved systems of data sharing among satellite operators.

To address these challenges, a novel approach involving secure Multiparty Com-
putation (MPC) was proposed by RAND Corporation in 2014. MPC is a crypto-
graphic tool that allow parties without trust to collaboratively compute functions.
This method allows satellite operators to calculate collision probabilities without
having to share the private trajectory data of their satellites, ensuring privacy and
reducing reliance on potentially unreliable central databases. It does this by con-
verting the probability calculation to binary gates and applying the standard garbled
circuit protocol to each gate. This approach is seen as a potential solution to the
limitations of current practices by enabling more accurate and secure data sharing.
Despite its potential, implementing this secure method is computationally intensive.
This is due to the fact that conjunction analysis requires the computation of complex
integrals, exponential functions, and matrix operations. These operations demand
the translation into millions of binary gates. Therefore, this method is not practi-
cal for operators managing multiple satellites as it is infeasible to apply this method

on every pair of satellites. A faster method would make satellite collision detection
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more schalable, enable real-time data processing, allow satellite operators to dynam-
ically adjust satellite paths, and thus significantly enhance the ability to manage and
mitigate collision risks.

The first method proposed by this thesis employs fuzzy Private Set Intersection
(PSI). Private Set Intersection is a cryptographic technique that allows multiple par-
ties to compare their private datasets and find common elements without revealing
any other information about the datasets. Fuzzy PSI extends this concept by al-
lowing for the identification of common elements that are similar, but not exactly
identical, based on certain predefined rules or similarity metrics. This modification
makes it particularly useful in scenarios where exact matches are rare or impractical.
In MPC, the number of AND gates is often used as a metric for computational cost as
AND gate is often the bottleneck in the speed of MPC algorithms. This method uses
around 7500,0000 AND gates to compute colliding satellites if two parties each owns
500 satellites. The second method using LSH and PSI uses only 2500,0000 AND gates
to compute colliding satellites for the same number of satellites. The second method
loses some degree of accuracy in compensation for the speed for different choice of
the parameters. When the collision distance is 500km, there can be around 20% false
negatives rates.

The primary contribution of this method is that it does not require the computa-
tion of conjunction analysis calculations, which involve multiple steps of arithmetic
operations. Instead of computing the probability of collision, this method directly
returns the possible satellites at risk of collision when provided with the collision dis-
tance parameter. While avoiding the conjunction analysis calculation gains us speed,
it also means that we choose proximity as a less precise metric of possibility of collision
instead of trajectories. Nevertheless, this thesis sheds light on a promising direction
for another method to establish a cooperative space data sharing prototype.

The first section of background chapter overviews the current spatial situation,
the primary method for satellite collision avoidance, and the two main motivations
for using MPC in collision detection. The next section introduces the existing MPC
method for detecting collision and its limitation. And the last section covers the back-
ground knowledge of the cryptographic concepts and tools that are used in the method
proposed by this thesis. The methods chapter in the thesis details two approaches
for satellite collision analysis. Initially, it presents a more accurate but relatively slow
method. Subsequently, it introduces a faster method that trades off some accuracy
for increased speed, making it more viable for real-time satellite management. The

results chapter shows the running time and accuracy of the two proposed methods.



Lastly, the conclusion chapter recaps the contribution of this thesis and discusses the

possible concerns in practices and the future direction of this research.






Chapter 2

Background

2.1 Satellites in the Space

The current situation of space surrounding Earth has an abundance of satellites, de-
bris, and various spatial objects. This congestion underscores the critical need to
keep track of objects in orbit to avoid collisions. This knowledge is called Space Situ-
ational Awareness (SSA). However, the capacity to gather and process data required
for effective SSA is unevenly distributed among nations. While some powerful coun-
tries have access to advanced observational equipment that allows them to have more
spatial objects’ location data, less resourceful nations often have fewer SSA data.
In addition, the geolocational distribution of advanced observational equipment is
significantly skewed towards more powerful nations, particularly those with a global
military presence, such as the United States. According to the US Department of
Defense, by December 2023, US has a total of 226,762 overseas active duty troops
in 176 countries while there are only 237 countries in the world as listed by CIA.
The US, with its extensive network of military bases around the world, is able to
combine observational data from multiple perspectives. This global coverage allow it
to construct an exhaustive set of observations of spatial objects. However, very few
other nations have this capability.

The United States, China, United Kingdom, and Russia currently lead in space
capabilities and the collection of space data. Their dominance not only reflects in the
volume of satellites they operate but also in the control and dissemination of space
situational data. In particular, U.S., China, and Russia lead the number of satellites
in military uses. As shown in Figure 2.1 and Figure 2.2, some countries own over
thousands of satellites while others own just one or two.

Presently, the primary method for collision avoidance for satellites involves reliance
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The 50 Operators/Owners of the Most Satellites Orbiting Earth

SpaceX

OneWeb Satellites

Planet Labs Inc.

Chinese Ministry of National Defense
Ministry of Defence of the Russian Federation

Spire Global Inc.

Number of Satellites

Swarm Technologies

U.S. Air Force

Iridium Communications Inc.

National Reconnaissance Office (NRO)

500 1000 1500
Operator/Owner

Country [l cnina I russia [l ux [l vsa

Figure 2.1: The top 10 operator owners according to DEWESoft published in Febru-
ary 2023. Note that China, Russia, and U.S. own the most operators in military
uses.

on a handful of central database provided by a more resourceful party such as Space
Surveillance Network managed by U.S. Strategic Command, Space-Track.org, or Ce-
lesTrak. Satellites filter through the database to identify objects in close proximity
and then conduct pairwise comparisons and calculations to assess collision risks.

This status quo has two main drawbacks. First, it poses a security risk, as it
heavily depends on data which might be manipulated or withheld by countries for
strategic reasons. For instance, a country might have incentives to misrepresent infor-
mation about a spy satellite to covertly approach foreign satellites or assets. Second,
the tracking data obtained by the central database is acquired through observations,
and thus is significantly less accurate than the active tracking information held by
each satellite’s operator. This is because he most accurate information comes from on-
board instrumentation, but this information is available only to the satellite operator.
Since satellite operators maintain accurate tracking information for only their own
satellites, sharing this higher-fidelity information between satellite operators could
provide significantly better tracking information than what can be obtained by a
central database.

As an example, a comparison of cooperative and non-cooperative tracking data
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Rank Country Total Number of Satellites

1 USA 2804
2 China 467
3 United Kingdom 349
4 Russia 168
5 Japan 93
6 India 61
7 Canada 57
8 Germany 47
9 Luxembourg 40
10 Argentina 34
11 France 31
12 Spain 24
13 Italy 21
14 Israel 19
15 South Korea 18
16 Brazil 16
17 Netherlands 16
18 Finland 15
19 Australia 14
20 Saudi Arabia 13
21 Taiwan 13
22 United Arab Emirates 13
23 Switzerland 13
24 Singapore 11
25 Turkey 9
26 Indonesia 8
27 Norway 8
28 Mexico 8
29 Thailand 7
30 Kazakhstan 6
31 Algeria, Belgium, Greece, Sweden 5
32 Denmark, Egypt, Malaysia, Vietnam 4
33 Czechia, Morocco, Nigeria, Pakistan, South Africa 3
34 Azerbaijan, Belarus, Ethiopia, Lithuania, Slovenia, 2

Venezuela
35 Austria, Bangladesh, Bolivia, Bulgaria, Chile, 1

Colombia, Ecuador, Estonia, Hungary, Iran, Iraq,
Jordan, Kuwait, Laos, Mauritius, Monaco, Nepal, New
Zealand, Paraguay, Peru, Qatar, Sri Lanka, Sudan,
Tunisia, Turkmenistan, Ukraine

Figure 2.2: The countries with the most satellites published by DEWESoft in Febru-
ary 2023

for Global Positioning System satellites found that cooperative tracking data reduced
mean positional error by 88 percent (1). This means the mean error for satellites
tracking using non-cooperative tracking is 7.267km while the cooperative tracking is
only 0.872 km. Thus, satellite operators could acquire much more accuracy regarding
collision detection if they all cooperated by sharing the location information from
on-board instrumentation. However, even if a operator who doesn’t want to rely on

the central public database wants to cooperate directly with other operators, privacy
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concerns still present a serious barrier, as operators often view the trajectories of
their satellites as private, and refuse to share this private information with others.
Using techniques from cryptography, we can improve accuracy while keeping the data

private.

2.2 Multi-Party Computation for Conjunction Anal-
ysis

One cryptographic tool that helps improve accuracy and privacy is secure Multiparty
Computation (MPC). MPC is a broad area of research in cryptography which has
attracted the attention of many researchers. The goal of MPC is to allow a group of
distrustful parties, P = {P;, P,, ..., Py}, to perform joint computations on private
inputs while ensuring input privacy and output correctness.

Andrew Yao’s early 1980s work, particularly the Garbled Circuits Protocol (2),
laid the groundwork for MPC. It is not until entering 2000s’ that this field transitioned
from theoretical entertainment to practical application due to algorithmic and com-
puting power improvements. The first MPC protocols proposed by Yao is a generic
protocol-it can be used to compute any discrete function that can be represented as
a fixed-size circuit.

In the literature of MPC, three primary adversary models are commonly discussed:

e The Passive or Semi-Honest Adversary, where corrupted parties adhere to the

protocol but attempt to glean extra information from the acquired data.

e The Active or Malicious Adversary, where corrupted parties may stray from the

protocol for their benefit.

e The Mized Adversary, where it encompasses scenarios where some parties are

corrupted passively and others actively.

This thesis considers the semi-honest adversary as a precursor to the stronger mali-
cious model. In addition, since all parties benefit from following the protocol, it is
reasonable for us to assume they don’t want to stray from the protocol.

A novel approach for satellites collision detection that uses MPC has been pro-
posed in 2014 (3). This report proposed using secure Multiparty Computation (MPC)
to allow satellite operators to calculate collision probabilities (conjunction analyses)

without sharing private information about the trajectories of their satellites.
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For two parties A and B, each of them has a satellite and four private parameters
that describe the trajectory of that satellite. Then they input the four parameters
to a secure version of conjunction analysis algorithm. The algorithm outputs the
probability of collision for the two satellites to each party. See Figure 2.2 for the

private inputs given to the algorithm.

Position: P,, P, € R?

Velocity: V,,V, € R?

Error: Covariance matrices C,, Cy € R3*3
Radius: R,, Ry, € R

Figure 2.3: Private inputs from each satellite operator.

The conjunction analysis calculation in clear is discussed in more detail in Ap-
pendix B. At a higher level, conjunction analysis is a computation of the collision
probability of two satellites involving complex matrix operations, integral calcula-
tions, and exponential function calculations.

The report then proposed that to make this in-clear algorithm secure, we could
either use Yao’s garbled circuit or Goldreich, Micali, and Wigderson (GMW) protocol
to convert the function into secure binary circuits. In other words, for each arithmetic
operation, there is a corresponding binary gate that compute the results securely.

The report did not actually implement the secure conjunction analysis. They ap-
proximated its time complexity by estimating the number of binary gates used during
the computation. This is because the actual running time depends on many factors
including hardware system and the desired numerical precision of the calculation. In
digital computing, each function can be expressed as a binary circuit, meaning that
functions are decomposed into sequences of AND and OR gates for processing by
the central processing unit. Likewise, functions can be reformulated using ADD and
MULT gates, forming what is known as an arithmetic circuit. The duration of a single
gate operation, when multiplied by the total number of gates required to compute
the function, offers a metric for estimating the computation time for any function.
For one pair of satellites, it takes 100 million binary gates to calculate its collision
probability securely.

In a later work published in 2016, they optimized the circuit and were able to
use 101574 MULT gates and 267002 total gates to calculate the collision probability
securely for one pair of satellites (4).

However, because of the fact that the doing secure conjunction analysis requires

many precise computations of complex arithmetic operations, this proposed method
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is very slow. And thus in the more majority cases where one party owns multiple
satellites, using this method to calculate the collision probability for every pair of
satellites becomes extremely inefficient as the slowness of secure conjunction analysis
makes it infeasible to perform this method on all possible pairs of satellites. Therefore,
this method is impractical in most of the cases due to its running time limitation. A

faster approach needs to be proposed.

2.3 Private Set Intersection

In this thesis, we use Private Set Intersection (PSI) to make a method for satellites
collision detection with improved efficiency while guaranteeing the privacy of the
satellites location information.

Private Set Intersection (PSI) is a specific problem within MPC that allows two
or more parties to introduce their private sets as inputs and compute the intersection
while nothing else can be inferred.

Based on the size of the sets, PSI can be classified into two categories: balanced set
size and unbalanced set size. This is because different factors needs to be considered
when designing and evaluating PSI protocols given the two scenarios. Balanced set
size is the scenarios when all parties have relatively same number of elements in their
private set. And unbalanced set size is the scenarios when some of the parties have
larger set than the others. In this thesis, we consider balanced set. This is because
the motivation of this work is to allow less resourceful countries to cooperate together,
and they have similar number of satellites as shown in Figure 2.2.

Fuzzy PSI is a variation of PSI in the way that it allows for the identification of
common elements that are similar, but not exactly identical, based on certain prede-
fined rules or similarity metrics. This concept was firstly introduced by Freedman et
al, who gives a protocol for Hamming-distance (over tuples of strings) (5). It allows
parties to learn which of their points are within distance e. In the satellites collision
detection case, fuzziness refers to individual coordinates of the parties that are close
but not necessarily equal. This modification makes it particularly useful in the satel-
lite collision detection scenario as most of the time, satellites are at risk of colliding
when their coordinates are close and not necessarily when they exactly match.

There are different ways to solve the PSI problem (6). Over the past years,
intensive research have been done designing custom protocols for PSI based on ho-
momorphic encryption such as the works of (7; 8) and other public-key techniques

(9; 10). However, Garbled circuits is still often chosen to implement PSI algorithm
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due to its flexibility and speed (11). Specifically, it is shown that a careful applica-
tion of garbled circuits leads to solutions that can be competitive with the fastest
custom protocols (11). And because it is generic, one can simply create a circuit for
the desired function by utilizing available software packages (12; 13; 14) for build-
ing garbled-circuit protocols instead of developing and implementing an entirely new
protocol.

In this thesis, we use a garbled circuit implementation of fuzzy PSI and PSI to

allow operators to detect satellites collision collaboratively with faster speed.






Chapter 3

Method

3.1 Overview

In this study!, we explore a scenario involving multiple parties, each denoted as
By, B, ..., B;, where ¢ represents the total number of parties involved. Each party
possesses a private dataset comprising tuples in the form of (coordinate, object),
with the objective of generating a new dataset. This new dataset should include data
points where the coordinates are within an e distance from the private sets of other
parties, meaning those points are at risk of collision. This way, parties are able to
detect satellites collision.

Specifically, in the context of space situational awareness, B; symbolizes countries
equipped with limited observatory capabilities. The private dataset of B; encompasses
information about space objects that are known to B; but may not be known to other
parties. To simplify our experimental setup, we focus on a scenario with only two
parties (i = 2), although the methodology is scalable to a multi-party setting.

The satellite location data were partitioned into two groups, each representing the
private dataset of one party. To identify the intersections of these datasets, which
indicate potential collision courses between space objects, we employed the Private
Set Intersection (PSI) algorithm. PSI was implemented using emp toolkit. Emp is
an efficient multi party computation toolkit written in C++ based on garbled circuit
developed by Wang Xiao in Northwestern University. Given the nature of space
object collisions, where the satellites that are at risk of collision mostly don’t have
exact coordinate match, we initially applied a secure fuzzy PSI computation using

garbled circuits.

Lgithub repository link for the codes
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However, the practical running time associated with direct fuzzy PSI computations
posed significant challenges. To address this, we adopted a dimensionality reduction
technique known as locality-sensitive hashing (LSH), effectively reducing the running

time.

3.2 Data acquisition

The satellite coordinates for this study were acquired from Space-Track.org, a database
managed by the Science Applications International Corporation (SAIC) in Virginia,
which specializes in government and information technology services. Space-Track.org
offers complimentary access to Space Situational Awareness Data to the international
space community. The dataset includes the most recent Two-Line Element (TLE)
sets for all tracked objects updated within the preceding 30 days, available in the ”full
catalog” section of the Space-Track.org website. TLE is a standard data format used
to describe the location of Earth-orbiting object using a list of orbital elements for a
given point in time (epoch). Using a suitable prediction formula, the State (position
and velocity) at any point in the past or future can be estimated to some accuracy.
An example of TLE data for an object is showed below in Figure 3.1 and its expla-

nation is showed below in Figure 3.2. To transform the TLE data into Cartesian

|ISS (ZARYA) |
| |
|1 25544U 98067A  04236.56031392 .00020137 00000-0 16538-3 0 9993 |
|2 25544 51.6335 344.7760 0007976 126.2523 325.9359 15.70406856328906 |
o e e A e |
11234567890123456789012345678901234567890123456789012345678901234567890| reference|number line|

Figure 3.1: Example TLE data

coordinates (z,v, z), I utilized the Python package Skyfield. This package processes
TLE files by employing the SGP4 satellite propagation model (15). I partitioned the
coordinates into two files. 1 use the first half of the data to simulate objects owned

by party A and the second half owned by party B.

3.3 Fuzzy PSI

We first implement a fuzzy Private Set Intersection (PSI) methodology employing
garbled circuits. We try this method first because the definition of fuzzy PSI aligns
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LINE 0

Columns | Example Description

1-24 ISS (ZARYA) The common name for the object based on information from the Satellite Catalog
LINE 1

Columns | Example Description

1 1 Line Number

3-7 25544 Satellite Catalog Number

8 18] Elset Classification

10-17 98067A International Designator

19-32 04236.56031392 | Element Set Epoch (UTC) *Note: spaces are acceptable in columns 21 & 22
34-43 .00020137 1st Derivative of the Mean Motion with respect to Time

45-52 00000-0 2nd Derivative of the Mean Motion with respect to Time (decimal point assumed)
54-61 16538-3 B* Drag Term

63 0 Element Set Type

65-68 999 Element Number

69 3 Checksum

LINE 2

Columns | Example Description

1 2 Line Number

3-7 25544 Satellite Catalog Number

9-16 51.6335 Orbit Inclination (degrees)

18-25 344.7760 Right Ascension of Ascending Node (degrees)

27-33 0007976 Eccentricity (decimal point assumed)

35-42 126.2523 Argument of Perigee (degrees)

44-51 325.9359 Mean Anomaly (degrees)

53-63 15.70406856 Mean Motion (revolutions/day)

64-68 32890 Revolution Number at Epoch

69 6 Checksum

Figure 3.2: TLE format explanation

with our goal of detecting satellites collision naturally. To recap, fuzzy PSI allows
the parties to learn which of their points are within distance e¢ of the private points
owned by another party. In our case, the output of the fuzzy PSI is exactly the set
of satellites that are at risk of collision. This approach aims to identify pairs of data
points from two distinct datasets, where the cumulative distance across all dimensions
(Manhattan distance) between each pair is within a predefined threshold, e.

Upon initiating the comparison, the algorithm evaluates each pair of data points,
one from each party’s dataset. It calculates the distance for each corresponding
dimension and sums these values. A data point pair is included in the output set if
and only if the total summed distance being less than or equal to €. Formally, for two

points (x1, 41, 21) and (22, Y2, 22), inclusion criteria is defined as:
|z1 — xo| 4+ g1 — Y| + |21 — 22| < e

The algorithm is described in 1. We run this algorithm on a benchmark dataset
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Algorithm 1 Fuzzy 3D PSI
Input: elements, distance, party
Output: intersection

1: procedure FuzzyPSI(elements, distance, party)

2 intersection <— an empty list of type Bit

3 for i < 0 to length(elements) — 1 do

4 for j « 0 to length(elements) — 1 do

5: a < Integer(elements|i][0], ALICE) > Compute from first party’s data

6 b < Integer(elements[j][0], BOB) > Compute from second party’s data

7 dif x <~ a -0

8 abs_diff_r < ABs(diff_z)

9: ¢ < Integer(elements|i][1], ALICE) > Compute from first party’s data
10: d < Integer(elements[j][1], BOB) > Compute from second party’s data
11: diff y < c—d
12: abs_diff_y + ABs(diff_y)

13: e < Integer(elements|i][2], ALICE) > Compute from first party’s data
14: f <+ Integer(elements[j][2], BOB) > Compute from second party’s data
15: diff z <—e—f

16: abs_diff_z <— ABs(diff_z)

17: sum <— abs_diff_z 4 abs_diff y 4 abs_diff »

18: inside <+ distance > sum

19: intersection.append (inside)

20: return intersection

but it turns out that the running time is still not ideal for the purpose of quick collision
detection. The detail of the running time is shown in the result section. Then, in

order to optimize the running time, we try another method.

3.4 LSH

Locality-Sensitive Hashing (LSH) is a class of functions used to reduce dimensionality

while preserving the relative distance between points.

Definition 3.4.1 (LSH Family). Let M = (M, d) be a metric space. Given a thresh-
old r > 0, an approximation factor ¢ > 1, and probabilities p; > p,, a family F of
hash functions h: M — S is said to be an LSH family if it satisfies the following

conditions. For any two points a,b € M and any h chosen randomly from F,
e if d(a,b) <r, then h(a) = h(b) with probability at least p;; and

e if d(a,b) > cr, then h(a) = h(b) with probability at most ps.
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In this thesis, we work with a LSH family on M = (R3, || - ||) consisting of random
projections. More specifically, for a given input @ € R3, we compute its dot product
with a Gaussian random vector & € R3, and further quantize the result into a set of
hash bins. The intention is that nearby points in the original space M fall into the
same bin, while faraway points fall into difference bins.

To describe the hash functions mathematically, denote by | - | the floor operation,
w the width of each quantization bin, and b a random scalar uniformly chosen from
between [0, w] that is kept the same for all points within single round of hashing. We
define

- (3.1)

h(¥) = K™ () = {wJ :

We perform 3 times of hashing for one coordinate v and get three hash values for this
coordinate v. Next, we apply standard PSI computation based on garble circuit on
the hashed values. The PSI algorithm simply compare each pair and output the ones

that are the same.

Algorithm 2 LSH + PSI
Input: coordinates, distance, party
Output: intersection

1: procedure LSH_PSI(coordinates, distance, party)

2 elements <— LSH(coordinates)

3 intersection <— an empty list of type Bit

4 for ¢ < 0 to length(elements) — 1 do

5: for j < 0 to length(elements) — 1 do

6 a < Integer(elements[i|, ALICE) > Compute from first party’s data
7 b < Integer(elements[j], BOB) > Compute from second party’s data
8 equal < a ==1>

9 intersection.append(equal)

10: return intersection

3.5 LSH analysis

We use LSH to project the 3D coordinates of the satellites onto 1D hashes, preserv-
ing the relative distance between the satellites with high probability in the hope of

decreasing the computing time. We demand the following.

(1) For any pair of nearby points 7, @ € R?, there is a high probability P, that they
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fall into the same bucket:

Pr(h(v) = h(wW)) > P, whenever |7 — || < R;. (3.2)

(2) For any pair of nearby points 7, @ € R?, there is a low probability P, < P; that
they fall into the same bucket

Pr(h(v) = h(W)) < P, whenever ||[U— @|| > ¢R; = Ra. (3.3)

In the above, || -|| is the {5 vector norm (i.e., the Euclidean distance) and Ry > R;.

Now we want to calculate the probability of two points ¢ and @ get hashed into
the same value, i.e., Pr(h(v) = h(w)). (Recall (3.1) for the formula of the hash
function.) The dot product takes the vector v from higher dimension to a real line.
Division of w and the floor function does the quantization part. For the hashes of ¢

and W to collide, two conditions must be satisfied:
o |7 U— 7| <w;and
e The end points of bins do not fall between h(¢)) and h(w).

So we can transfer calculating the probability of the hashes of ¥ and w colliding
to calculating the probability of the two conditions are both satisfied. Since the two
events are independent, the probability of the two events are both satisfied is just the
multiplication of the probability of the two events happen individually.

For the first condition, since & is drawn from the standard Gaussian distribution,
from direct computation we can get ¥ - ¥ — Z - @ has the same distribution as ||7/ —
w||Z where 7 is drawn from the same distribution. More generally, this fact is true
for all random variables that are p-stable and thus this method also works if we
sample Z from other p—stable distributions. See appendix A for examples and further
discussion. Thus, the probability of the first condition is the same as the probability
of ||t/ — ||z < w, and further equals the probability of z' < w Recall that 2" is
drawn from normal distribution, so the pdf of the first condition is the same as the
pdf of a normal distribution. And the probability of the first condition is the pdf of
normal distribution integrating from 0 to Io=a|

For the second condition, we first calculate the probability of the the dividers of
bins fall between v and w, and it is just the distance of the points divided by the

bin width and integrates from 0 to w. This is because the offset b for each point is
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sampled in uniform from 0 to w, and thus the probability of the bin falls between the
two points is uniform. Putting the two conditions together, and let v = || — ||, we

get the probability of ¢ and w hash to the same value be,

w/u

b (1-27) da. (3.4)

where f5 is the pdf of normal distribution. Note that we did a change of variable trick

r=

to combine the second condition and the first condition to be inside a single integral.

Let us change the variable of integration to ¢t = zu, yielding

/Ow %fg (5) (1 _ %) dt (3.5)

To make the probability close to 1 when v; and vy are very likely to be hashed into

the same value, we multiply by 2. So finally we get,

Pr(h(5) = h(iF)) = 2 /0 ' % 5 (%) (1 - 5) dt (3.6)

For k rounds of hashing, collision is defined by hash values being the same for all

k, so the resulting probability is

[Pr(h(v) = h(w))]".






Chapter 4

Results

As described in the method section, the satellites location data is obtained from
Space-Track.org and converted to coordinates format using Skyfield. We use the first
half of the data to simulate private satellites locations of party A, and the second half
of the data to simulate private satellites locations of party B. We utilize actual satellite
location data to enhance the testing of our method, thereby achieving more realistic
and accurate results. To give a better sense of how these satellites distributes in the
space, I use simple randomly sampling without replacement in uniform distribution
to select points from party A and party B shown in Figure 4.1 below.

We aim to evaluate the running times and performance of the two methods out-
lined in the Methods section. In our secure computation approach, which is based on
garbled circuits, the running time is predominantly constrained by the AND gates;
thus, we use them as a proxy for assessing running time. To estimate this, we calcu-
late the number of AND gates utilized during the secure computation benchmarks of
Fuzzy PSI and simple PSI.

For the Fuzzy PSI benchmark, we generate it by randomly creating 3D points
uniformly distributed between 1 and 100 for a given set size. We are able to use
random points instead of real data because the runtime is independent of the content
of the input and depends only on the size of the input. The benchmarks for LSH and
simple PSI are generated in a similar manner. It’s important to note that LSH merely
hashes each point three times, making its running time linear and negligible for large
set sizes compared to the second computation phase (PSI). Therefore, we represent
the time complexity of the entire method—first applying LSH and then running 3D
PSI—using the time complexity of 3D PSI alone. Figure 4.2 shows the running time
comparison between the two methods. The graph shows that the method using LSH
and simple 3D PSI has running time much smaller than Fuzzy PSI. It is noteworthy
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Sample from A
Sample from B

40000

Figure 4.1: The red circles are sampled from satellites of party A and the blue triangles
are sampled from satellites of party B. The scale is km.

that using 3D PSI means using three rounds of hashing in the LSH phrase. It is also
possible to use just one round of hashing, and thus resulting a 1D PSI. In that case,
the running time of LSH + PSI method is much more faster.

Next, we want to compare the performance of the two methods. We use the
number of false positive and false negative as metrics for accuracy. A pair of points
is a false positive if it is reported as a collision pair but their distance is further than
the specified collision distance. A pair of points is a false negative if it is within the

collision distance but it is not reported as a collision pair. For Fuzzy PSI, the number
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Set Size vs. Number of AND Gates
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Figure 4.2: The time complexity of Fuzzy PSI and PSI benchmarks estimated using
the number of AND gates.

of false positive and false negative are both 0 because our algorithm evaluates all
pairs of points and returns the ones that have distance between the specified ¢ and
exclude the points that are not.

For LSH and simple PSI method, since the PSI we used visit each pair of hash
values, there is no room for inaccuracy in this part, and the number of false positives
and negatives are purely results from LSH. As shown in the method section, the
probability of collision depends on the distance between two points, the bin width,
and the number of k-products. This means that the accuracy of this method depends
on what values of collision distance, k, and bin width we choose.

We choose the collision distance to be 500km because results show that a satellite
with a detection range of 500km would be able in more than 80% of the cases to
observe a high-risk object twice and for at least 10s before the potential collision
(16). Therefore, we want the collision probability for points that have distance within
500km to be large and for distance greater than 500km to be small.

To choose the parameters, we pick a distance and variate the bin width. For each
bin width, we calculate the collision probability using the closed formula described in

the method section to get a general sense, and then go through each pair of hashed
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points to count the total number of false positive and false negative pairs in our
simulated dataset. The collision probabilities for &k = 1 and k£ = 3 are shown in
Figure 4.4 and Figure 4.5 respectively. The false positives and false negatives count

is shown in Figure 4.3.

False Positives vs Bin Width
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100000
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False Negatives vs Bin Width

False Negatives

Figure 4.3: The upper graph shows the number of false positives vs. bin width for
the testing data and the lower graph shows the number of false negatives vs. bin
width for the testing data. There are 1000 points for one party and there are 451
true collision
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Probability of Collision
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Figure 4.4: The probability of collision calculated by the formula derived in the
method section for distance of pairs of 500km, 1000km, 1500km, 2000km, and 3000km.
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Figure 4.5: The probability of collision calculated by the formula derived in the
method section for distance of pairs of 500km, 1000km, 1500km, 2000km, and 3000km
for three rounds of hashing.






Chapter 5
Conclusion

As the number of satellites and space debris increases, tracking and predicting their
positions has become essential to prevent collisions. The capacity to manage and
process this data varies significantly among nations, with only a few possessing ad-
vanced monitoring capabilities. These nations not only manage a large volume of
satellites but also dominate control over Space Situational Awareness (SSA) data.
Current collision avoidance methods primarily rely on central databases like the Space
Surveillance Network, which poses risks of data manipulation and often provides less
accurate data than what satellite operators can independently track. This under-
scores the need for improved data-sharing systems among operators. In response,
the RAND Corporation proposed a novel approach in 2014 using secure Multiparty
Computation (MPC) that allows operators to calculate collision probabilities without
sharing private trajectory data, enhancing privacy and reducing reliance on unreliable
central databases. However, this method is computationally intensive and may not
be practical for operators managing multiple satellites.

This thesis introduces two methods for computing colliding satellites. The first
method, employing fuzzy Private Set Intersection (PST), which requires approximately
75 million AND gates when each of two parties owns 500 satellites. The second
method combines Locality-Sensitive Hashing (LSH) with PSI and uses about 25 mil-
lion AND gates for the same scenario. The second method sacrifices some accuracy
to achieve faster processing times, depending on the parameters chosen.

The main contribution of these methods is that they eliminate the need for con-
junction analysis calculations, which involve the computation of complex integrals,
exponential functions, matrix operations, and multiple arithmetic. Rather than cal-
culating the probability of collision, these methods directly identify potential satellites

at risk of collision based on the provided collision distance parameter.
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However, this proposed MPC-based solution faces its own set of challenges in
practical implementation. Firstly, since a publicly accessible database with space
objects’ information already exists, it is somewhat unrealistic to assume that parties
will not consult this resource or factor its information into their calculations. Thus,
one future direction is to incorporate the central database into the paradigm to use
as a cross-reference, either to increase accuracy or to decrease running time. Another
direction is to find optimal parameters (bin width, collision distance) mathematically

or find another LSH function with less false positives and false negatives.



Appendix A
p-stable distribution

Definition A.0.1 (p-stable distributions). A distribution D is p-stable if, for any
independent identically distributed (iid) random variables X1, ..., X, distributed ac-
cording to D, and any real numbers vy, ..., v,, the random variable > 7" , v;X; has a

probability distribution that is the same as that of the random variable
1
n P
(Sor)
i=1

Remark. The standard Cauchy distribution is 1-stable and the standard Gaussian

where X is drawn from D.

probability distribution is 2-stable.

Recall that the characteristic function,
px(t) =E[e"*],

is a function that completely determines the behavior and properties of the probability
distribution of the random variable X.
Stable distributions can be parameterized by four parameters, «, 3,7,d. These

parameters can be interpreted as follows:

e « is the weight in the tails of the distribution. In other words, they are the

values outside of the critical values in the distribution.

e [ is the skewness of the distribution and —1 < § < 1. A zero beta means that

the distribution is symmetric.

e 7 measures the dispersion of the distribution.
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e ) is the location parameter.

A normal distribution with mean p and variance o is 2-stable and parametrizable
by (27 07 \/57 ILL)'



Appendix B

Conjunction Analysis

Conjunction analysis calculates the probability of collision for two satellites. Each
satellite is modelled as a spherical object, so its radius captures its shape. Each
satellite is assumed to deviate from its position, p, and these deviations are assumed
to be normally distributed with covariance matrix C'. The two satellites are also
assumed to have linear relative velocities as in any short time window, the satellite’s
trajectory is almost linear. Because the positional errors on the two satellites are
assumed to be independent and what matters for collision are the relative distance,
we can shift all the errors onto one body. It is also standard to shift all the mass
onto the other body, creating a “combined object” whose radius is equal to the sum
of the radii of the two individual spheres. We can then imagine a ball of radius
R, + Ry, passing through a density ellipsoid with covariance matrix C, + C. This ball
traces a “collision tube” through the combined density ellipsoid, and the probability
of collision is then simply the probability mass of the density ellipsoid within this

collision tube. The full conjunction analysis calculation is described in Algorithm 16.
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Algorithm 3 The conjunction analysis calculation
Inputs: {V;,C;, P, Ri}ap

V, V}, Va
14 |V E j —
Q <« [j K|
C+ QT(C,+ Cy)Q
(u,v) < Eigenvectors(C')

(02,00) + Elgenvalues(C’)
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RQ_xQ
13 p = g [ [ e (2, y) dyda
14: Where

15: f(x,y) = exp (_% {(tﬂy + <%>2D

16: Return: p
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